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One-dimensional detonation wave propagation in channels of varying cross-section 
is reconsidered and studied in detail. Different analytical solutions are given for the 
case of an accelerated detonation wave in a converging channel and for a decelerated 
detonation wave in a diverging channel. Separation of the leading shock and the 
reaction zone in the second case is taken into account. Two- and three-dimensional 
problems of geometrical detonation wave dynamics can be solved by adapting the 
well-known approach of Whitham, but Whitham’s method is based on a suitable 
one-dimensional analytical model. 

1. Introduction 
Multi-dimensional problems of detonation-wave propagation can successfully be 

overcome by applying the well-known theory of geometrical shock dynamics of 
Whitham (1957, 1959, 1974). This approach has been demonstrated by the work of 
Edwards, Thomas & Nettleton (1979), Thomas (1979), and more recently by Bartlmii 
& Schroder (1986). For certain other cases, a modification of Whitham’s theory is 
necessary. In all cases, however, a suitable analytical model of the one-dimensional 
propagation of shock and detonation waves in channels of varying cross-section can 
provide the basis of the theory. 

The work of Chester (1953) and Chisnell (1957) can be applied to the propagation 
of ordinary shock waves in channels of varying cross-section with good results. 
Several papers have been published with regard to detonation wave propagation. 
Teipel (1975, 1976) and Schnitzspan (1976) assumed the existence of a Chapman- 
Jouguet detonation (CJ-detonation) at  all times, despite the area variation in 
the channel. This assumption is only true for a very special relationship between the 
heat production by the chemical reaction and the area change, but no burning 
reaction is capable of satisfying such a condition. Only at  this price can a self-similar 
solution be achieved. 

Later Teipel (1983) dropped the restriction of a CJ-detonation and applied the so- 
called characteristic rule (see Whitham 1974). He has given a complete numerical 
solution and also derived a functional relation between the area change in the 
channel and the pressure rise at the detonation wave. This is analogous to the 
relation derived by Chester (1953) and Chisnell (1957) for ordinary shock waves. 
Unfortunately, his analytic solution is only valid for relatively small amounts of heat 
production per unit mass of the burning mixture, a restriction which is unrealistic for 
detonation waves. Furthermore, only accelerated detonation waves were treated 
since only converging cylindrical or spherical flow was considered. None of the 
aforementioned papers has taken into account the important case of a decelerated 
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CJ-detonation in a diverging channel. This phenomenon differs radically from the 
accelerated detonation wave, as will be discussed later. 

For this reason and also because of its importance for the theory of geometrical 
detonation wave dynamics, the one-dimensional problem of detonation wave 
propagation in channels of varying cross-section is reconsidered here. An improved 
analytic solution for arbitrary heat addition in the case of an accelerated detonation 
wave in a converging tube is given. The solution presented here can provide the basis 
for the calculation of two- or three-dimensional detonation wave propagation, a 
topic which will be the subject of another paper. Finally, the shortcomings and 
limitations of the Whitham theory applied to detonation waves are discussed. 

2. The detonation wave models 
Ignoring the complex three-dimensional unsteady inner structure, a detonation 

wave may be thought of as a reaction zone in which a fast exothermic chemical 
reaction occurs, preceded by a shock wave. The burning reaction is triggered after a 
certain induction time by the strong pressure and temperature rise in the shock 
wave, whereas the latter is supported by the heat liberated in the reaction zone. 

Different detonation wave models are available, depending upon the desired 
accuracy and the specific problem encountered. Some of the more pertinent models 
are briefly described below. 

2.1, The single-front model 

Usually, the chemical reaction zone will be very thin. Furthermore, the thickness of 
the induction zone will decrease exponentially with increasing temperature and may 
be ignored in a great many cases. Under these assumptions, the leading shock wave 
and the reaction zone are considered as a single discontinuity, giving rise to the 
single-front model (figure l a ) .  This is the simplest theoretical description of a 
detonation wave. 

This model is described by the well-known reaction wave equations, which are 
discussed in detail and given for unsteady waves by, among others, Oppenheim & 
Stern (1959), Cherny (1973) and by the present author (Bartlma 1971, 1975). A 
somewhat simplified form will be employed here because, in general, the detonation 
wave Mach numbers are of the order of 5 or more for hydrocarbon-air mixtures, and 
up to the order of about 10 for hydrogen-oxygen mixtures. The dimensionless value 
of the heat liberated by the chemical reaction, &, per unit mass of the mixture is also 
roughly of the same order of magnitude. Hence for 2M2 % 1 and Q - M ,  the following 
slightly simplified reaction wave equations have been derived : 
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FIQURE 1.  Detonation wave models: (a) single-front model, (6) two-front model, 
(c) refined two-front model. 
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For M,, < M < 00 we have 0 < Q < 1. In the above equations p ,  p,  T and c are the 
pressure, density, temperature and sound velocity; cPl  is the specific heat a t  
constant pressure, of the unburned gas. Ideal gas was assumed a t  both sides of the 
front but the ratio of the specific heats was allowed to change from y1  to y z  across 
the detonation wave. Q may be considered as an effective heat addition, which 
reduces to Qo if y is kept constant. Finally u and D are the flow velocity of the 
reaction products and the detonation velocity in a fixed coordinate system. The 
unburned gas is a t  rest. 

The detonation wave Mach number M has a lower limit of M,, which corresponds 
to the case of the steady CJ-detonation. The term Q in (2.1) becomes zero, a 
characteristic feature of this special case which reduces the reaction wave equations 
to an exceptionally simple form. As M+ 00, then Q+ 1, and neglecting the change 
in y ,  the equations (2.1) become the equations for an unsteady strong shock wave : 

From (2.2), it  follows that in the case of a strongly overdriven detonation wave, 
the influence of the chemical reaction is of second order and therefore may be 
neglected. Experiments clearly show this tendency. 

2.2. The two-front model 
The quite simple single-front model has proved to be extremely useful. Nevertheless, 
there exist cases when the induction time plays an important part, especially if 
decelerated detonation waves are involved. Hence, the detonation wave model must 
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be modified by considering the shock and the reaction zone as two different 
discontinuities separated by an induction zone (figure 1 b). This description leads to 
a two-front model. 

The induction zone thickness is governed by the ignition delay time T which 
strongly depends on the temperature. Since there is no satisfactory theory available, 
T must be given by an empirical relation for the gas mixture under consideration. 

A further refinement of the two-front model, such as considering a finite reaction 
rate which specifies a finite reaction zone thickness (figure lc), does not seem to be 
feasible for this particular problem, since the detonation wave structure is also not 
considered. 

Here it is important to remember that a detonation wave actually has quite a 
complex, three-dimensional, unsteady inner structure consisting of local detonation 
waves, as described above, and ordinary shock waves (see e.g. Strehlow 1984 ; Fickett 
& Davis 1979). However, despite the simple models used, calculated results of the 
detonation velocities may be considered as good approximations to actual values. 

3. The propagation of detonation waves in a converging channel 
As previously mentioned, there are distinct behavioural differences between 

accelerated and decelerated detonation waves. Consequently, different mathematical 
models are required depending upon the movement of the detonation wave in a 
converging or diverging duct, particularly if the incident wave is a steady CJ- 
detonation. 

Consider a slightly overcompressed detonation wave originally moving with a 
Mach number of M ,  down a tube of constant cross-section A,. A t  x = 0 the channel 
starts to converge, and as a result the detonation wave is accelerated. One- 
dimensional flow of an ideal gas is assumed. The unburned gas mixture in front 
of the detonation wave is at rest. The area change is assumed to be small: 
(A(x)-A,) /A,  Q 1. Then, the dependence of the detonation wave Mach number has 
to be determined for a given cross-section distribution A ( x )  for x > 0 .  

Under the assumptions made above, the motion of the burned gas is governed by 
the following equations for the conservation of mass, momentum, and energy: 

I ap ap au pu d ~ ( x )  -+u-+p-+-- = 0, 
at ax ax A ( ~ )  dx 

au au lap 
at ax pax 

at ax 

-+u-+-- = 0, 

-+u--c~@+Ug) aP 3P = 0. J 

In addition, there are some initial and boundary conditions a t  the detonation 
wave. A schematic picture of the (2, t)-diagram for the detonation wave propagation 
is shown in the upper part of figure 2. 

The undisturbed state of the unburned gas ahead of the detonation wave 
(subscript 0) ,  and the state of the reaction products of the oncoming detonation 
(subscript 2) are known. If the area change is small, the state of the reaction products 
behind the disturbed detonation wave (no subscript) will deviate only little from 
state 2. Therefore, linearization is possible with respect to state 2 : u = u2 + u’, p = 
p,+p’,p = p z + p ’ ,  ..., where uf Q u2,pf Q p 2 , p f  Q p 2  ,... . 
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x = o  

FIGURE 2. Accelerated detonation wave in a converging channel. 

From this point on, the steps of the calculation are the same as for the propagation 
of an ordinary shock wave. Therefore, only a brief outline is given here. Details may 
be found in Whitham (1974). 

The linearized compatibility conditions are derived from (3.1). For the case in 
question, only the equation for the C+-family of the characteristics is required. After 
integration it may be written in following form : 

+f{x- (uz+cz) t }  along C,, (3.2) 

and for the equation of the C ,  characteristics we get 

z-(u,+c,)t = const. 

The arbitrary function, f, follows from the initial conditions : 

f{z - (242 + c2) t }  = 0. (3.4) 

This indicates that within the framework of our linearization, no disturbances from 
downstream occur. 
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Thus far, the calculations have been identical for both the shock wave and the 
detonation wave. Now an appropriate detonation wave model must be chosen, which 
in this case may be the single-wave model. After linearizing the reaction wave 
equations (2.1), the perturbations of u andp in terms of the change in the detonation 
wave Mach number, M' = M - M o ,  are as follows : 

where G o =  1-2 ' + ( y * + l ) &  -. [:, 1; 
Combining (3.2) and (3.5), the relation between the area 

number disturbance becomes 

(3.5) 

change and the Mach- 

(3.6) 

Po co 

So far the calculation has remained consistent with our assumption of small area 
change. No additional assumptions have been made. Reflected waves are of second 
order. 

Turning now to finite area change, (3.6) may be written in differential form, as has 
been done in the case of shock wave propagation by Chisnell (1957) : 

- = -H(M)  dM, (3.8) 
dA 
A 

where (3.9) 

Po co 

The initial conditions are 

A = A,:  M = M,, H(M) = H(M,). 

The Mach-number function H(M)  has following limits : 

I as M + M C J ,  sz + 0, N(Mc,)  + a3 ; 

as M + m ,  Q+1,  H ( M ) -  [ 1+-+  ( - 7.2 y]q 
Yz Y z - 1  M 

(3.10) 

The limiting case, hZ+ m, is again formally identical with the case of a strong shock 
wave, In the case of vanishing heat addition (&-to) the function H(M)  becomes the 
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FIGURE 3. G(M) for Q = 0 (shock wave) and H ( M )  for Q = 7 (detonation wave) as functions of 

the wave Mach number. 

well-known Mach-number function G(M) given for an ordinary shock wave by 
Chester (1953) and Chisnell (1957). In  the literature G(M) is known as the Chisnell 
function and may be written in following form : 

where 

M G(M) = ~ (M2 - 1) h(M), (3.11) 

(3.12) 

(3.13) 

and where U is the propagation velocity of the shock wave in a fixed coordinate 
system. 

In figure 3, G(M) for the shock wave (Q = 0) and H(M) for a typical detonation 
wave are drawn as functions of the wave Mach number M .  Figure 3 shows clearly that 
for an accelerated detonation wave it is not permissible to describe the propagation 
process of a detonation wave by the leading shock wave alone. As we shall see later, 
this is not necessarily true in the case of a decelerated detonation wave. Furthermore, 
for highly overcompressed detonation waves, we can see again that the influence of 
the heat addition vanishes. 

Let us recall the assumption M2 9 1,  which was used for the derivation of H(M) .  
A comparison with the exact expression, derived from the complete reaction wave 
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equations, generally shows that the error will be below 1 YO. This relation holds for 
values of the dimensionless heat addition that are common for detonation waves in 
premixed gases, namely 5 < Q < 10. 

Finally, the desired relation between channel area and detonation wave Mach 
number can be obtained by integrating (3.8) : 

(3.14) 

Performing the integration results in 

(3.15) 

where R = Qi, R, = Qb. 
Equation (3.15) is only valid, strictly speaking, for M ,  > McJ,  since in the vicinity of 
M ,  = M,, the linearization in (3.5) is not correct. 

The result (3.15) could also have been achieved by applying Whitham’s (1974) 
characteristic rule. But the derivation used here gives better insight and shows more 
clearly the limits of the method. 

As in the case of ordinary shock propagation treated by Chester (1953) and 
Chisnell (1957), the neglect of secondary shock waves now can only be justified by 
comparison with experiment. Chisnell’s results for shock waves were surprisingly 
good; a fact still not yet well understood. Since the shock is dominant in a 
detonation, equally good results are to  be expected, especially in the Mach-number 
region under consideration. 

In figure 4, the relation between area ratio A / A ,  and Mach number ratio M/Mo is 
shown for different values of M,.  For very high detonation wave Mach, numbers 
(M+co),  the result becomes independent of the heat liberated by the chemical 
reaction, and simplifies to 

where 

A 
A, = (2)”. (3.16) 

This relation is the well-known result for strong shock waves. The case of strong 
imploding shock waves having spherical or cylindrical symmetry has been solved by 
Guderley (1  942) and Butler (1954). 
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FIQURE 4. Area ratio A / A ,  against the Mach number ratio MIM, for different values of M,. 

y2/y1 = 0.8, Q = 8.1, M,., = 6.055. 

For the special cases of cylindrical and spherical flow, the detonation Mach number 
can be expressed as a function of the distance x through the result 

(3.17) 

where cr = 1 for cylindrical flow and 6 = 2 for spherical flow. a, is the wall angle and 
2h0 is the channel height at  x = 0. 

4. The propagation of detonation waves in a diverging channel 
When a self-sustained CJ-detonation propagates into a channel with increasing 

cross-section (figure 5 ) ,  the detonation wave will be decelerated. Since a CJ-  
detonation is the lower limiting case of a detonation wave, it can no longer exist in 
the classical form. The diminishing temperature behind the weakening shock front 
causes a rapid increase of the induction time, and subsequently a separation of the 
reaction zone. 

As long as the temperature of the gas in the induction zone exceeds the self-ignition 
temperature, the velocity of the reaction zone is prescribed by the shock wave. 
Therefore, we still have a certain type of coupled system which may be considered 
as a non-classical detonation. Only if the temperature in the induction zone becomes 
lower than the self-ignition temperature is the velocity of the reaction zone governed 
by the laws of flame propagation. Reaction zone and shock wave are now completely 
decoupled. The detonation wave has ceased to exist. 

Generally the reaction zone is fairly thin. Therefore, it is advisable to employ the 
two-front model as described in $2, which will be a good approximation for our 
considerations. Furthermore, experiments (Bartlma & Schroder 1986) have revealed 
a fact of great importance for the theoretical modelling: in the case of a detached 
reaction zone, the leading shock wave behaves as it would if the chemical reaction 
were not present. This gives us the convenient possibility of calculating the shock 
wave propagation first, thereafter the ignition delay time, and finally the reaction 
front. 
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FIGURE 5. Decelerated detonation wave in a diverging channel. 

The relation between shock Mach number and the area of the channel cross-section 
is given by the well-known Chisnell (1975) formula 

where now M = U/co and U ( x )  is the propagation velocity of the shock wave with 
respect to a fixed coordinate system. The Mach number function G(M) is given by 
(3.11). 

The A-M relation may be obtained immediately by integrating (4.1). The exact 
solution can be found in Chisnell's paper. Here we give a more convenient 
approximate formula for M2 9 1 : 

where 
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Equation (4.2) is formally the same as (3.16); h has also been assumed to be 
constant, which is well justified for the shock Mach numbers that usually occur in 
detonation problems. 

From the shock relation we know the state of the unburned gas mixture 
immediately behind the leading shock at every instant, and also the induction time 
7, provided A ( s )  is given. 

In order to continue our considerations we have to specify a particular gas 
mixture. For a propane-oxygen-argon mixture, 7 is given by Burcat et al. (1971) as 

where n1 = 0.57, n2 = - 1.22, n3 = 0, and K = 4.4 x Here [C3H,], [O,], [Ar] are 
the molar concentrations, E is the activation energy and R the universal gas 
constant. 

In  addition we restrict ourselves to cylindrical or spherical flow. Using (4.2) we 
obtain the following relation between the position of the shock front xs, the channel 
area, and the shock Mach number: 

where u = 1 for the cylindrical case and u = 2 for the spherical case. Again a, is the 
wall angle and 2h, the channel height at  x = 0. Similarly, a relation between the 
time-coordinate and the shock Mach number can be obtained : 

h 1 M +  cot - 
h, (u+h)M,tana,[(%) -I]' (4.5) 

The thickness of the induction zone at a time t is defined as 

li(t) = %(t)- -z , ( t ) .  (4.6) 

For a given time t,, we know the shock Mach number N,, the state of the gas mixture 
behind the shock wave and the corresponding induction time ~ ( f , ) ,  given by (4.3). 
Then, the induction zone thickness l i ( t )  a t  a time t = t 1+7( t l )  follows from simple 
geometrical considerations (figure 5) : 

= ~ A t ) - - ~ ( t d - W ~ 1 ) ,  (4.7) 

where Q is the velocity (assumed to be a constavt to good approximation) of a fluid 
particle within the induction zone. Therefore, 4 is given by the flow velocity behind 
the shock wave at  the time t = t , :  

4 A 2 (W-1) 2 
--ul--- _ -  - 
co co Yl+l Ml Yl+1 

%- Ml* 

Finally we obtain an equation for l i ( t )  in dimensionless form: 

Thus, we may calculate the position of the reaction front step by step from the 
long as the temperature in the induction zone position of the leading shock wave, 

exceeds the self-ignition temperature. 
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FIGURE 6. Shock wave and reaction front in the (x, t)-plane for a propane-nitrogen-oxygen 
mixture (cylindrical case). 
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FIQURE 7 .  Induction zone length 1, in mm as a function of the shock Mach number M = U/c,  
for the mixture of figure 6. 

The results of such a calculation for a mixture of 8 % propane, 40 % oxygen, and 
52% argon are presented in figures 6 and 7. The incident detonation wave is a CJ- 
detonation. Cylindrical flow is considered, with a wall angle of a, = 15". Figure 6 
shows the separation of the reaction zone in the (2, .+plane. Figure 7 demonstrates 
the exponential increase of the induction zone length with decreasing shock Mach 
number. 

5. Concluding remarks 
In considering the problem of detonation wave propagation in channels of varying 

cross-section, we have to distinguish between two different cases : accelerated 
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detonation waves in converging channels and decelerated detonation waves in 
diverging channels. 

In the first case we always have to deal with overcompressed detonation waves, 
even if the oncoming wave is a CJ-detonation. Therefore, the situation is relatively 
simple. A single-front model for the detonation wave and simplified equations 
(because M2 9 1) can be applied. In general it is not possible to describe the 
propagation process by the leading shock of the detonation wave alone. Only for 
highly overcompressed detonation waves does the influence of the chemical reaction 
vanish. Therefore, a suitable extension of Chisnell’s theory is necessary. 

The second case, decelerated detonation waves, is entirely different, especially if 
the incident wave is a CJ-detonation. With decreasing wave Mach number the 
induction time for the chemical reaction becomes more and more important. 
Subsequently, separation of the leading shock and the reaction zone occurs. For the 
analytical treatment a two-front model will now be appropriate. As long as the 
temperature behind the shock exceeds the self-ignition temperature of the mixture, 
the velocity of the reaction front is still governed by the shock wave, and we may 
consider the system as a non-classical detonation. In  certain cases, however, the 
calculation can be considerably simplified by the empirical result that the detached 
shock wave behaves in a way that is independent of the chemical reaction. Good 
agreement between the experiments and the results of Whitham’s approach, 
containing the one-dimensional theory, can be achieved. 

However, it should be remembered that Chisnell’s theory neglects all re-reflected 
waves, and no really satisfactory explanation has been found up to now for its 
amazing accuracy in many cases, despite its simplicity. We also should keep in mind 
that there might be cases of decelerated detonation waves where the interactions 
between the reaction wave and the shock accumulate to an intolerable extent. 

Not so clear at  present is the case of a decelerated overcompressed detonation 
wave. The question arises as to whether the latter can be decelerated until the state 
of a CJ-detonation is attained, or whether separation of shock and reaction zone 
occurs earlier for instability reasons. The‘answer has yet to be given by experiments. 
In any case, an analytical treatment is possible, without difficulty, using the 
theoretical models given above. 

This work was supported by the Stiftung Volkswagenwerk. 
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